In biological systems such as organisms, ecosystems, or the biosphere, most parameters must stay under control within a narrow range around a certain optimal level under certain environmental conditions. The deviation of the optimal value of the controlled parameter can result from the changes in internal and external environments. A change of some of the environmental conditions may also require change of that range to change for the system to function. The value of the parameter to maintain is recorded by a reception system and conveyed to a regulation module via an information channel. An example of this is Insulin oscillations.
Biological systems contain many types of regulatory circuits, both positive and negative. As in other contexts, positive and negative do not imply consequences of the feedback have good or bad final effect. A negative feedback loop is one that tends to slow down a process, whereas the positive feedback loop tends to accelerate it. The mirror neurons are part of a social feedback system, when an observed action is "mirrored" by the brain - like a self-performed action.
Feedback is also central to the operations of genes and gene regulatory networks. Repressor (see Lac repressor) and activator proteins are used to create genetic operons, which were identified by Francois Jacob and Jacques Monod in 1961 as feedback loops. These feedback loops may be positive (as in the case of the coupling between a sugar molecule and the proteins that import sugar into a bacterial cell), or negative (as is often the case in metabolic consumption).
Any self-regulating natural process involves feedback and/or is prone to hunting. A well-known example in ecology is the oscillation of the population of snowshoe hares due to predation from lynxes.[citation needed]
In zymology, feedback serves as regulation of activity of an enzyme by its direct product(s) or downstream metabolite(s) in the metabolic pathway (see Allosteric regulation).
Hypothalamo-pituitary-adrenal and gonadal axis is largely controlled by positive and negative feedback, much of which is still unknown.
In psychology, the body receives a stimulus from the environment or internally that causes the release of hormones. Release of hormones then may cause more of those hormones to be released, causing a positive feedback loop. This cycle is also found in certain behaviour. For example, "shame loops" occur in persons who blush easily. When they realize that they are blushing, they become even more embarrassed, which leads to further blushing, and so on.
Biological systems contain many types of regulatory circuits, both positive and negative. As in other contexts, positive and negative do not imply consequences of the feedback have good or bad final effect. A negative feedback loop is one that tends to slow down a process, whereas the positive feedback loop tends to accelerate it. The mirror neurons are part of a social feedback system, when an observed action is "mirrored" by the brain - like a self-performed action.
Feedback is also central to the operations of genes and gene regulatory networks. Repressor (see Lac repressor) and activator proteins are used to create genetic operons, which were identified by Francois Jacob and Jacques Monod in 1961 as feedback loops. These feedback loops may be positive (as in the case of the coupling between a sugar molecule and the proteins that import sugar into a bacterial cell), or negative (as is often the case in metabolic consumption).
Any self-regulating natural process involves feedback and/or is prone to hunting. A well-known example in ecology is the oscillation of the population of snowshoe hares due to predation from lynxes.[citation needed]
In zymology, feedback serves as regulation of activity of an enzyme by its direct product(s) or downstream metabolite(s) in the metabolic pathway (see Allosteric regulation).
Hypothalamo-pituitary-adrenal and gonadal axis is largely controlled by positive and negative feedback, much of which is still unknown.
In psychology, the body receives a stimulus from the environment or internally that causes the release of hormones. Release of hormones then may cause more of those hormones to be released, causing a positive feedback loop. This cycle is also found in certain behaviour. For example, "shame loops" occur in persons who blush easily. When they realize that they are blushing, they become even more embarrassed, which leads to further blushing, and so on.
No comments:
Post a Comment