The bandwidth of an amplifier is the range of frequencies for which the amplifier gives "satisfactory performance". The definition of "satisfactory performance" may be different for different applications. However, a common and well-accepted metric is the half power points (i.e. frequency where the power goes down by half its peak value) on the output vs. frequency curve. Therefore bandwidth can be defined as the difference between the lower and upper half power points. This is therefore also known as the −3 dB bandwidth. Bandwidths (otherwise called "frequency responses") for other response tolerances are sometimes quoted (−1 dB, −6 dB etc.) or "plus or minus 1dB" (roughly the sound level difference people usually can detect).
The gain of a good quality full-range audio amplifier will be essentially flat between 20 Hz to about 20 kHz (the range of normal human hearing). In ultra high fidelity amplifier design, the amp's frequency response should extend considerably beyond this (one or more octaves either side) and might have −3 dB points < 10 and > 65 kHz. Professional touring amplifiers often have input and/or output filtering to sharply limit frequency response beyond 20 Hz-20 kHz; too much of the amplifier's potential output power would otherwise be wasted on infrasonic and ultrasonic frequencies, and the danger of AM radio interference would increase. Modern switching amplifiers need steep low pass filtering at the output to get rid of high frequency switching noise and harmonics.
The gain of a good quality full-range audio amplifier will be essentially flat between 20 Hz to about 20 kHz (the range of normal human hearing). In ultra high fidelity amplifier design, the amp's frequency response should extend considerably beyond this (one or more octaves either side) and might have −3 dB points < 10 and > 65 kHz. Professional touring amplifiers often have input and/or output filtering to sharply limit frequency response beyond 20 Hz-20 kHz; too much of the amplifier's potential output power would otherwise be wasted on infrasonic and ultrasonic frequencies, and the danger of AM radio interference would increase. Modern switching amplifiers need steep low pass filtering at the output to get rid of high frequency switching noise and harmonics.
No comments:
Post a Comment