A component may be classified as passive or active. The strict physics definition treats passive components as ones that cannot supply energy themselves, whereas a battery would be seen as an active component since it truly acts as a source of energy.
However electronic engineers performing circuit analysis use a more restrictive definition of passivity. When we are only concerned with the energy due to signals it is convenient to ignore the so-called DC circuit and pretend that the power supplying components such as transistors or integrated circuits is absent (as if each such component had its own battery built in) although it may in reality be supplied by the DC circuit which we are ignoring. Then the analysis only concerns the so-called AC circuit, an abstraction which ignores the DC voltages and currents (and the power associated with them) present in the real-life circuit. This fiction, for instance, allows us to view an oscillator as "producing energy" even though in reality the oscillator consumes even more energy from a power supply, obtained through the DC circuit which we have chosen to ignore. Under that restriction we define the terms as used in circuit analysis as follows:
Note that these distinctions only apply to components listed below which would be modeled as elements within circuit analysis. Practical items which act as transducers or have other connections to the outside world such as switches, cannot be subject to this form of classification since they defy the view of the electronic circuit as a closed system.
However electronic engineers performing circuit analysis use a more restrictive definition of passivity. When we are only concerned with the energy due to signals it is convenient to ignore the so-called DC circuit and pretend that the power supplying components such as transistors or integrated circuits is absent (as if each such component had its own battery built in) although it may in reality be supplied by the DC circuit which we are ignoring. Then the analysis only concerns the so-called AC circuit, an abstraction which ignores the DC voltages and currents (and the power associated with them) present in the real-life circuit. This fiction, for instance, allows us to view an oscillator as "producing energy" even though in reality the oscillator consumes even more energy from a power supply, obtained through the DC circuit which we have chosen to ignore. Under that restriction we define the terms as used in circuit analysis as follows:
- Passive components are ones which cannot introduce net energy into the circuit they are connected to. They also cannot rely on a source of power except for what is available from the (AC) circuit they are connected to. As a consequence they are unable to amplify (increase the power of a signal), although they may well increase a voltage or current such as is done by a transformer or resonant circuit. Among passive components are familiar two-terminal components such as resistors, capacitors, inductors, and most sorts of diodes.
- Active components rely on a source of energy (usually from the DC circuit, which we have chosen to ignore) and are usually able to inject power into a circuit although this is not part of the definition[1]. This includes amplifying components such as transistors, triode vacuum tubes (valves), and tunnel diodes.
- Lossless components do not have a net power flow into or out of the component. This would include ideal capacitors, inductors, transformers, and the (theoretical) gyrator.
- Lossy or dissipative components do not have that property and generally absorb power from the external circuit over time. The prototypical example is the resistor. In practice all non-ideal passive components are at least a little lossy, but these are typically modeled in circuit analysis as consisting of an ideal lossless component with an attached resistor to account for the loss.
Note that these distinctions only apply to components listed below which would be modeled as elements within circuit analysis. Practical items which act as transducers or have other connections to the outside world such as switches, cannot be subject to this form of classification since they defy the view of the electronic circuit as a closed system.
No comments:
Post a Comment